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Abstract—Recent advances in the generative adversarial net-
work (GAN) based image translation have shown its potential
of being an image style transformer. Similarly, defined as a
style transformer for physiological signals, a feature filter is
used to filter privacy-related features while still keeping useful
features. However, existing feature filter techniques have three
problems: (1) the privacy-related features cannot be filtered out
to the extent we need through a simple Conv-Deconv generator
structure, and (2) the generator cannot control the semantics
(maintain desired features) of given physiological signals. To
address these problems, we utilize deeper neural networks and
adopt techniques from domain adaptation. This includes semantic
loss and a GAN based model structure with two generators,
two discriminators and a classifier to form a game of five. Our
results on the UCI EEG dataset demonstrate that our model can
simultaneously (1) achieve the state-of-the-art accuracy removal
for the privacy-related feature, (2) reduce the desired feature
removal accuracy drop, and (3) make the filtered signals can be
interpreted or visually checked.

Index Terms—Deep Learning, EEG, Convolution Neural Net-
work, Image Translation, Generative Adversarial Nets

I. INTRODUCTION

Every single moment, people communicate with the world.
Such communication between the brain and the external
environment needs to be done through the peripheral nerves
and muscle channels. However, the availability of the brain-
computer Interface (BCI) provides such a non-muscle con-
trolled communication channel, enabling the human brain to
interact with the environment directly, using brain activity as
a control interface [34], [15]. In real practice, the control in-
terface is generally chosen from electroencephalograph (EEG)
signals [19].

As an essential part of Brain-Computer Interfaces (BCIs),
the EEG, also known as brainwaves, has found a variety of
exciting and useful applications for users and has become
increasingly important. Gathered from the scalp, the EEG is
a signal containing information about the electrical activity of
the brain. Electrodes placed on the scalp are used to capture

electrical information from the brain under the scalp, bone
and other tissues. Since it is an overall measurement of human
brain electrical activity, it may contain a wealth of information.
This is the reason why EEG can be applied to diverse areas like
disease identification [30], personal recognition [28], visual
image generation using brainwaves [21], and brain typing [20].

However, from the viewpoint of data analysis, automatic
EEG analysis is challenging due to the inherent feature of
bio-signals. Apart from the well-known low signal-noise ratio
[4], [32], [26], data format varies [24], there is limited training
data [12] and large individual difference [14], [25], [33]. One
source of ambiguity is the fused nature of the features, which is
common for most bio-signal feature learning tasks. The fusion
here means that any one experimental trial of signals contains
both desired features and privacy-related features for given
tasks. Also, due to the lack of macroscopic knowledge of the
mechanism of EEG activity, this fused feature problem in EEG
is more serious than many other physiological signals.

In real-world situations, for EEG based applications, cus-
tomers not only require accuracy for the brain-computer inter-
face but also need a competent level of privacy and information
safety [29]. But unfortunately, EEG data contain a messy,
vibrant symphony of personal information, including one’s
individuality, learning capacity and emotional information.
That is, all brain activity related features that are recorded
will be uploaded and can be used for legal or potentially
illegal objectives. Current research has tried to specify several
standards for operating with EEG data to protect users’ privacy
but that has not solved the problem fundamentally [13], [23],
[2].

To address the above issue, Yao proposed a feature filter for
short-term EEG signals [36]. The essence of privacy problems
comes from that data containing multiple labels’ information,
with at least one type of label related to our task as well as
irrelevant labels that will cause privacy problems. In this paper
they are referred to as desired and privacy-related features
respectively. Shown in Fig. 1, it is based on the hypothesis
that the existence of a certain feature for EEG signals can be
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Fig. 1. Feature Filter Definition [36]. X is the original domain and Y is the
target domain. The original domain in our definition refers to EEG singals
with both desired features and privacy-related features. The target domain
means EEG signals with desired features only.

defined precisely by the distribution X and Y. They described
a feature filter as a task of domain translation. In Fig. 1, X
means a domain with both desired features and privacy-related
features. Y means a domain with desired features but with
privacy-related features filtered out. So the feature filter is
defined as a map from the X domain to the Y domain. To
perform such a mapping function, they utilized a CycleGAN
structure which could perform such domain transformation.
But directly applying such a structure still faces two problems,
(1) in testing there were still nearly 20% of EEG signals where
the privacy-related feature was not filtered out, and (2) almost
10% of EEG signals lost their desired features when the feature
filter was applied.

The first problem is that some EEG signals will still be
recognized as having privacy-related features. We believe this
is because the existing structure has not been able to capture
the difference between the two distributions well enough. For
the generator, the simplest solution is to make the model
”deeper” to capture hierarchical information from one EEG
image. So we applied the ResNet model from Johnson [11]
with nine residual blocks. For the discriminator, we used the
”patchGAN” classifier [37] which has a better fit with the
cycle consistent loss. The combination of ResNet generator
and patchGAN has shown success in many image translation
tasks [16], [37], and our experiment further demonstrates that
it also works as part of a feature filter.

The second problem comes from the important requirement
about feature filtering in keeping the target feature. For the
desired feature accuracy drop, we believe there does not exist
enough regularization for the CycleGAN structure. That is
because of their two-player formulation between generator
and discriminator. Specifically, the training objective from the
original cycleGAN does not involve any indicator for the
magnitude of the undesirable reduction in the target feature.
As a result, we take ideas from domain adaptation [9], to use
one additional classifier to specify the feature we need to keep.
The classifier will now work as a regularization term which
helps the feature filter to maintain the information we want.

II. RELATED WORK

The generative adversarial network (GAN) is a powerful
framework that usually has two neural networks compete in a
minimax game [7]. GAN variants have achieved success in the
image generation area [22], [16], [37]. A GAN has two major
networks, a generator, which learns the real data distribution
and generates images, and a discriminator, which learns to
identify the real image. Throughout this progress, both the

generator and the discriminator strive to minimize their own
costs and gradually approach their goal.

Image-to-image translation aims to learn the mapping
between two different image distributions [10]. Systems for
this task can capture the style difference between two image
distributions and then translate a given image from source
domain to target domain. Among existing models, The Cycle-
Consistent Adversarial Networks(CycleGAN) [37] is a popular
image-to-image translation network for unpaired images. It
uses an autoencoder-like structure to overcome the challenge
of pairing images.

Domain adaptation is a problem that given source data
X , source label ZS , and target data Y but without target
labels, the objective is to learn a model that predicts the label
for target data Y . Among existing domain adaptation models,
the domain-adversarial neural network [1] (DANN) is the first
that utilizes the adversarial mechanism for extracting domain
invariant features. The subsequent adversarial discriminative
domain adaptation (ADDA) [31] provides a simple but power-
ful framework for domain adaptation and many of the current
methods can be seen as special cases of ADDA [9], [27], [17].
Among them, CYCADA [9] is the one that combine the ideas
of CycleGAN and ADDA, forming the cornerstone for our
current research on feature filters.

III. METHODOLOGY

A. UCI EEG Dataset

Using the same configuration as Yao’s work [36], we use
the multi-label UCI EEG dataset. It is an alcoholism dataset
which contains 122 participants with 45 diagnosed as control
and 77 as alcoholism, forming 3,819 trials of control EEG
signals and 7,033 trials of alcoholism EEG signals. Each trial
of EEG is also labeled with stimuli information. There are five
types of stimuli which are images selected from the Snodgrass
and Vanderwart picture set. That is we can both put one trail
of EEG into a two-class alcoholism classification model as
well as a five-class stimulus classification model. For the UCI
dataset, each trial of EEG signal is in one-second length,
sampled at 256 Hz using 64 electrodes cross the scalp. We split
the source distribution within subjects, which is randomly split
as 7:1:2 for training, validation and testing for each alcoholism
subject. The target distribution is the whole data from control
subjects.

For each trial of EEG signal, the EEG2Img technique [3]
will be used to transfer wave like data to grid-like data.
Given one trial of EEG signal, Fast Fourier Transform (FFT)
is performed on the time series to transfer the time domain
information to frequency domain information. Then with the
help of the 3D electrode position, the frequency domain
information on 3D can be plotted into 2D EEG images by
polar projection. The previous work on EEG images has shown
success on both short-term EEG and long-term EEG signals
[35], [3], [18], demonstrating that it is an effective method for
extracting features from EEG signals.

The motivation for this is very straight-forward. For the
EEG2Img method, theoretically, we can adjust the size of the
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Fig. 2. Structure of Proposed Feature Filter

output EEG image as needed. So for one trial of EEG signal,
we can directly transfer it to one EEG image with 32×32×3
format which is a very typical format in the computer vision
area and there are many mature and successful approaches
and models for such formats. And since pictures are already
generated by interpolation, 32 × 32 × 3 format is enough to
represent EEG frequency domain information. As a result,
by utilizing this method, it is possible for us to adapt those
computer vision models for EEG.

B. Feature Filter for EEG

For feature filter, we consider the problem of supervised
domain transformation, where we are given source domain
distribution X with both desired and privacy-related features,
labels Z for desired features, target domain distribution Y with
desired features only.

The objective of the feature filter is to directly learn a
mapping from domain X to domain Y. So given an EEG image
from X domain, the mapping representation in domain Y is our
filter result. For this CycleGAN based Structure, the specific
loss formulations are shown as follows.

Shown in Fig. 2, for UCI EEG dataset, the task of a feature
filter map EEG images with the alcoholism condition to an
EEG image with the control condition.

1) Loss Formulation: The objective of the feature filter is
composed of three parts: adversarial loss, autoencoder loss and
sentiment and classification loss. They can be expressed as:

A.Adversarial Loss:
The adversarial loss is the key part for the mapping from

one distribution to another. For achieving this, the adversarial
discriminator used to judge the following image is real or fake.
For the loop X → G(X)→ F (G(X)),

The ability to judge whether a image belongs to a certain
distribution is given by the adversarial loss. For loop X →
G(X)→ F (G(X)), it is defined as:

LGAN (G,DY , X, Y ) = Ex∼pdata(x)[log[(1−DY (G(x))]]

+ Ey∼pdata(y)[logDY (y)]

This is generally the standard format of GAN loss and
used to make sure the generated samples are convincing. The
adversarial loss for the loop Y → F (Y ) → G(F (Y )) is in
the similar format.

However, in real practice, the training of a GAN is quite
unstable. Though the adversarial loss will force the generated
image to look similar to real images, there is no guarantee
for the direction of changes. To further make sure the feature
filter meet our requirements, autoencoder loss and sentiment
loss are introduced as regularization terms.
B.Autoencoder Loss:

The autoencoder loss is also named as reconstruction loss
or cycle-consistency. It is basically an L1 loss which is used
to keep X ≈ F (G(X)), that is the generator will be forced
to maintain features from the original image to have enough
information to reconstruct the image during the backward loop.
As a result, for loop X → G(X)→ F (G(X)), it refers to:

LAL(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]

Loop Y → F (Y ) → G(F (Y )) has a similar autoencoder to
make G(F(Y)) like Y.
C.Sentiment and Task Loss:

The sentiment and task loss originates from Hoffman’s CY-
CADA model on domain adaptation [9]. Hoffman’s solution
is to train a cycleGAN model with sentiment and task loss to
generate fake target data fakeY from source data XS , thereby
forming ( fakeY , ZS ) data label pairs.

Though the objective for domain adaptation is not related
to our feature filter task, their proposed sentiment and task
loss is useful for building a feature filter. In their proposed
CYCADA model, the goal for using sentiment and task loss
is to maintain labeled information when generating ( fakeXT ,
ZS ) data label pairs. Such an idea satisfies the property that
the desired features are maintained in our feature filter design.

The sentiment and task loss is given by an additional
classifier C which gives labeled information. For the definition
of task loss, it is basically a simple cross-entropy loss:

Ltask(C,X,Z) = −E(x,z)∼(X,Z)

K∑
k=1

1[k=z]log(σ(C
(k)(x))),

where σ means the softmax function. In practice, the classifier
will be trained on source domain X and desired label Z. As a
result, loss Ltask(C,X,Z) will be used to show that the target
feature label is retained.

So the classifier C works as a constraint by giving a seman-
tically consistent loss. The semantic consistent loss will not
take any explicit labeled information but focuses on the label
consistency. That is the two generators will not change the
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labeled information when performing image translation. If we
define p(C,X) = argmax(C(X)), the semantic consistency
loss is as follows:

Lsem(G,F,X, Y, C) = Ltask(C,F (Y ), p(C, Y ))

+ Ltask(C,G(X), p(C,X))

As a conclusion, using the full loss functions mentioned
above, we add those loss functions, and we have the final
objective:

Ltotal = Ltask(C,X,Z)

+ LGAN (G,DY , X, Y ) + LGAN (G,DX , Y,X)

+ LAL(G,F ) + LAL(F,G)

+ Lsem(G,F,X, Y, C)

2) Network Architecture: We first reconstruct Yao’s work
on feature filters to use a modified version of Image-wise
Autoencoder as our generator (Shown in Table. 1.), and our
discriminator is the combination of Image-wise Autoencoder
and one fully connected layer works.

TABLE I
THE CONV-DECONV GENERATOR STRUCTURE [36]

Encoder Decoder
Input 32× 32× 3 Color Image Input 128× 8× 8 Matrix

4× 4 conv, Leaky ReLU, 4× 4 Deconv, Leaky ReLU,
4× 4 conv, Leaky ReLU, 4× 4 Deconv, Leaky ReLU,
3× 3 conv, Leaky ReLU, Tanh
3× 3 conv, Leaky ReLU,

For improving performance, we tried the ResNet-9 gen-
erator and patchGAN combination for training. The com-
bination of ResNet generator and patchGAN achieves the
best performance in many image translation applications [37].
Shown in Fig. 3, the residual-based generator is based on
Johnson’s ResNet model on super-resolution [11]. Similar
to their work, our network is composed of one encod-
ing block, nine residual blocks, and one decoding block.
Each encoding or decoding block follows the two-stride
convolution/deconvolution-InstanceNormReLU structure, and
each residual block follows the convolution-InstanceNorm-
ReLU-convolution-InstanceNorm residual connection struc-
ture. The advantage of using ResNet-9 is because it is capable
of identifying the highways and produces straighter street
blocks in the map, thereby making it easier for the generator
to learn the identity function [8].

The patchGAN discriminator is derived from pix2pix [10],
which is a paired image translation framework. The ordinary
discriminator determines whether an image is real or fake
from the entire image while the PatchGAN discriminator use
local patches. For loop X → G(X) → F (G(X)), The
discriminator Dy takes in two images, the real image Y and the

9 Residual Blocks

Encoder Decoder

X Y

Fig. 3. Resnet-9 Generator Structure
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Fig. 4. Feature Filter Performance (alcoholism = 2 class, stimulus = 5 class)

generated image G(X), passes them through 5 downsampling
convolutional-BatchNorm-LeakyReLU layers, and outputs a
matrix for further classification. That is each element in the
matrix corresponds to the classification of one patch. The
advantage of using patchGAN is to avoid conflict with the
autoencoder loss. Since we are using the final matrix to
classify the image as real or fake, the patchGAN structure is
used primarily to model high-frequency structure, whereas the
autoencoder loss already provides low-frequency information
[10].

C. Evaluation Method

We use the same configuration as Yao’s work [36] to allow
direct comparison. This consists of a pre-trained additional
classifier to judge whether the features are maintained or not,
and the additional classifiers for disease and stimulus are taken
from the Image-wise autoencoder [35] and trained separately
from the feature filter training. The additional classifiers are
also trained in the within-subject setting in both alcoholism
subjects and control subjects. The objective of the feature
filter is to filter out privacy-related features while keeping
desired features, as a result, it will be best if we can witness
a significant alcoholism accuracy reduction with at most mild
stimulus accuracy reduction.

IV. RESULTS AND DISCUSSION

Fig. 5. shows the visual example of the result of the feature
filter. The left two columns map disease EEG images to
control EEG images, the right two columns map control EEG
images to the disease EEG images. From each direction, it
can be seen that our feature filter has made a slight style
transformation to images. However, those style changes are
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not interpretable since features from the original EEG images
are not interpretable. But from t-SNE visualization in Fig. 6,
we can see that the generated control image distribution is
close to the original control distribution. Also, they have clear
differences from the original alcoholism image distribution.
Furthermore, from Fig. 4, initially, 90.7% of the original
images are correctly classified as alcoholism. After our feature
filter, only 0.6% of the images are classified as alcoholism.
That is nearly all images have had their alcoholism information
filtered out. At the same time, stimulus accuracy has only lost
4.2%, and the remaining accuracy is still well above chance
since it is a 5-class classification problem for classifying
stimuli.

Furthermore, one testing technique is to go through the
feature filter multiple times. This idea is inspired by Ge’s
work for grammar error correction [5]: in their proposed work,
they observed that some sentence with multiple grammatical
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Fig. 7. Performance with the Number of Inferences

TABLE II
COMPARISON MODELS AND LOSS FUNCTIONS

Method Alcoholism
Acc %

Stimulus
Acc %

G:Conv-Deconv D:Conv (LGAN + LAL) [36] 18.2 47.7
G:Resnet D:PatchGAN (LGAN + LAL) 0.643 48.9
G:Resnet D:PatchGAN (Ltotal) 0.642 49.5

errors cannot be corrected by the Seq2Seq [6] inference using
a single round of inference. So they involve multiple rounds of
inference in both training and testing. In our work, we have not
involved multiple inferences in training but merely used our
trained feature filter to make multiple inferences on validation
and test data. The result shown in Fig. 7 indicates that result
is stable after six round of inference. The accuracy increases
in the first 3 rounds, we think that is because our feature filter
removes unstable factors rather than filtering out the privacy-
related information in the first three rounds, but that need a
further analysis to determine.

The performance difference between models and loss func-
tions are shown in Table. 2. The result show that the best
performance after multiple times of inference on the test
set. We can see that Resnet and patchGAN contribute most
to the performance boost. The sentiment loss and task loss
contributes but does not achieve significant improvement on
the drop in alcoholism accuracy. One hypothesis we have
is that the stimulus classifier is currently far from a strong
classifier. Our 53.7% is reasonable where chance is 20%, but
cannot really be called a strong classifier. Thus, we think that
could be one factor why adding sentiment and task loss has
not achieved a larger improvement.

V. CONCLUSION

Building a feature filter will have a significant improvement
on people’s privacy protection. Previous work on feature filters
still have problems in filtering out all privacy-related feature
information and keep wanted feature loss in a reasonable
range. This paper further improves the performance of the
feature filter and nearly removed all privacy-related features
by introducing deeper networks and semantic loss. The ex-
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periment results using accuracy drops show that our proposed
feature filter can filter out a nearly all privacy-related features
and still keep most of the desired features.

VI. LIMITATION AND FUTURE WORK

The first limitation is that our method is based on EEG2Img
and image translation techniques, which means that it is only
suitable for short-term EEG signals. The design of a feature
filter for long-term EEG signals remains to be solved. The
second limitation is future work for the generator. The U-net
structure is also applicable as a generator since it is also the
current state of the art method for several image translation
tasks. The third limitation is in our model we simply stack
error functions but do not really optimize the training proce-
dure. For further limiting the loss of wanted features, we can
begin with the modification of training procedure for a GAN.
Finally, we will include more experiments on different short-
term EEG datasets in the future to test existing hypothesis on
multi-inference technique and semantic loss.
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[24] A. Schlögl. An overview on data formats for biomedical signals.
In World Congress on Medical Physics and Biomedical Engineering,
September 7-12, 2009, Munich, Germany, pages 1557–1560. Springer,
2009.
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